Next to global warming, ocean acidification is currently considered as the second major carbon dioxide problem. With the increase of carbon dioxide (CO2) in the atmosphere larger quantities of the gas are getting into the seawater, too. There it forms carbonic acid, which lowers the pH value of the oceans.
Biodiversity, including small predators such as dragonflies and other aquatic bugs that attack and consume parasites, may improve the health of amphibians, according to a team of researchers. Amphibians have experienced marked declines in the wild around the world in recent decades, the team added.
Regional climate change models predict an increased freshwater runoff into the Baltic Sea. This will result in increased inflow of terrestrial dissolved organic carbon.
Corals may be better equipped to tolerate climate change than previously believed, according to research led by Dr Emma Kennedy from Griffith University (Queensland, Australia).
A report to be published Thursday in the journal Nature suggests that global warming may increase upwelling in several ocean current systems around the world by the end of this century, especially at high latitudes, and will cause major changes in marine biodiversity.
By the end of the 21st century, climate change will significantly alter an important oceanographic process that regulates the productivity of fisheries and marine ecosystems, Northeastern researchers report in a new paper in published online Wednesday in the journal Nature. These changes are likely to influence the geographic distribution of marine biodiversity.
Sardines, anchovies and mackerels play a crucial role in marine ecosystems, as well as having a high commercial value. However, the warming of waters makes them vanish from their usual seas and migrate north, as confirmed by a pioneering study analysing 57,000 fish censuses from 40 years. The researchers warn that coastal towns dependent on these fishery resources must adapt their economies.
At least 5 mass extinction events have profoundly changed the history of life on Earth. But a new study led by researchers at the University of Gothenburg shows that plants have been very resilient to those events.
The ecosystems of the Adriatic Sea have weathered natural climate shifts for 125,000 years, but humans could be rapidly altering this historically stable biodiversity hot spot, a University of Florida study says.
When oil from the Deepwater Horizon spill first began washing ashore on Pensacola Municipal Beach in June 2010, populations of sensitive microorganisms, including those that capture sunlight or fix nitrogen from the air, began to decline. At the same time, organisms able to digest light components of the oil began to multiply, starting the process of converting the pollutant to carbon dioxide and biomass.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.