Posted in | News | Fuel Cells | Hydrogen

New Catalyst Offers Potential Application in Hydrogen Fuel Cells

A new catalyst that enables safe storage and transportation of hydrogen has been developed by researchers from the Brookhaven National Laboratory (BNL) at the U.S. Department of Energy.

Etsuko Fujita, Jonathan Hull, and James Muckerman

The catalyst reversibly converts hydrogen and carbon dioxide (CO2) gas to and from a liquid formic acid at ambient pressure and temperature. The liquid can be shipped with the same type of infrastructure utilized to transport oil and gasoline. Hydrogen can be used as an alterative fuel, as it can be efficiently transformed into energy without generating greenhouse gases or toxic substances. However, the major problem is the storage and transportation of hydrogen. The issue can be addressed by using the new catalyst.

James Muckerman, a chemist at BNL and a co-author of the research, stated that when hydrogen release is required for fuel cell applications or others, the user can just turn over the ‘pH switch’ found on the catalyst in order to make the reaction run in a reverse way. In addition, the liquid solution can be directly utilized in formic-acid fuel cells, added Muckerman.

Yuichiro Himeda from the National Institute of Advanced Industrial Science and Technology (AIST) in Japan has been working on this kind of catalyst for several years. Himeda utilized iridium metal complexes that comprise aromatic diimine ligands with peripheral, pendent hydroxyl (OH) groups. Recently, he collaborated with BNL researchers, Etsuko Fujita, James Muckerman, and Jonathan Hull, to further advance the study. The team found that under appropriate conditions, the OH groups on the catalyst’s diimine ligand help hydrogen to react with CO2. The BNL team thought that it can enhance the reactivity by inserting the pendent bases close to the metal centers, instead of in peripheral positions. Finally, the group developed a new iridium metal catalyst that incorporates a novel ligand, synthesized by scientists at Scripps Research Institute.

Testing has shown that the catalyst offered a superior performance for storing and regenerating hydrogen under very mild conditions. This catalytic method may have an application in hydrogen fuel cells.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Chai, Cameron. (2019, March 01). New Catalyst Offers Potential Application in Hydrogen Fuel Cells. AZoCleantech. Retrieved on November 24, 2024 from https://www.azocleantech.com/news.aspx?newsID=16339.

  • MLA

    Chai, Cameron. "New Catalyst Offers Potential Application in Hydrogen Fuel Cells". AZoCleantech. 24 November 2024. <https://www.azocleantech.com/news.aspx?newsID=16339>.

  • Chicago

    Chai, Cameron. "New Catalyst Offers Potential Application in Hydrogen Fuel Cells". AZoCleantech. https://www.azocleantech.com/news.aspx?newsID=16339. (accessed November 24, 2024).

  • Harvard

    Chai, Cameron. 2019. New Catalyst Offers Potential Application in Hydrogen Fuel Cells. AZoCleantech, viewed 24 November 2024, https://www.azocleantech.com/news.aspx?newsID=16339.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.