Posted in | News | Ecosystems

Pesticide Mixtures have Major Impact on Aquatic Ecosystems

New research led by The University of Queensland has provided the first comprehensive analysis of pesticide mixtures in creeks and rivers discharging to the Great Barrier Reef.

UQ's School of Earth and Environmental Sciences researcher Associate Professor Michael Warne conducted the study with the Queensland Department of Environment and Science, and analysed 2600 water samples from 15 waterways that discharge into the Great Barrier Reef lagoon over a four-year period.

"While I knew many water samples would contain mixtures, I was shocked to find that essentially every sample contained mixtures of pesticides," Dr Warne said.

"We found 99.8 per cent of the samples contained pesticide mixtures with up to 20 pesticides in any single water sample.

"The issue with having mixtures of pesticides is that as the number of pesticides increases the impact to aquatic ecosystems generally increases.

"This work strongly supports the inclusion of the pesticide reduction target in the Reef 2050 Water Quality Improvement Plan which aims to protect at least 99 per cent of aquatic organisms at the mouths of rivers from the adverse effects of all pesticides."

Dr Warne said the best way to address the problem of pesticides and pesticide mixtures in run-off was to work with land managers, share information and help them to improve their pesticide management practices.

"We are doing just that with other partners including Farmacist, James Cook University and the Department of Environment and Science through Project Bluewater which is funded by the Great Barrier Reef Foundation," he said.

"This project is working with 70 sugar cane farmers in the Barratta Creek and Plane River catchments to improve their pesticide management and application, upgrade equipment, reduce pesticide use and switch to using lower risk pesticides.

"We have found the farmers involved to be very eager to engage with the science - they have embraced the challenge and are making significant steps toward improvement.

"We are looking to expand this project to include considerably more farmers in more catchments and make more rapid progress in reducing pesticide losses to waterways.

"There is always hope, but this study reveals the pesticide situation is more complex than we previously realised."

The research was published in the journal Environmental Pollution (DOI: 10.1016/j.envpol.2020.114088).

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.