Posted in | News | Pollution | Ecology

OU Researchers Identify the Limits and Insufficiency of Major Greenhouse Emission Database

A University of Oklahoma-led study published in 2020 revealed that both area and plant growth of paddy rice is significantly related to the spatial-temporal dynamics of atmospheric methane concentration in monsoon Asia, where 87% of the world's paddy rice fields are situated.

Now, the same international research team has released a follow-up discussion paper in the journal Nature Communications. In this paper, the team identifies the limits and insufficiency of the major greenhouse emission database (EDGAR) in estimating paddy rice methane emissions.

"Methane emission from paddy rice fields contribute to the rising of atmospheric methane concentration (XCH4), one of the greenhouse gases for global warming and climate change," said Xiangming Xiao, a professor in the Department of Microbiology and Plant Biology, College of Arts and Sciences.

"In this paper, our team highlighted the needs and pathways to improve this dataset, which could lead to substantial improvement in understanding and modeling methane emission, atmospheric transport and chemistry over monsoon Asia and the globe."

OU researchers developed annual paddy rice maps at 500-meter spatial resolution and quantified the spatial-temporal changes in rice paddy area in monsoon Asia during 2000-2015. Xiao said these annual maps are the first of their kind and could be used to further improve simulations of models that estimate methane emission from paddy rice fields.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.