Posted in | News | Solar Energy

Surrey Researchers Highlight the Need to Address Stability Bottleneck of Perovskite Solar Cells

Mass adoption of perovskite solar cells will never be commercially viable unless the technology overcomes several key challenges, according to researchers from the University of Surrey. 

Perovskite-based cells are widely believed to be the next evolution of solar energy and meet the growing demand for clean energy. However, they are not as stable as traditional solar-based cells. 

The Surrey team found that stabilising the perovskite "photoactive phases" – the specific part of the material that is responsible for converting light energy into electrical energy – is the key step to extending the lifespan of perovskite solar cells. 

The stability of the photoactive phase is important because if it degrades or breaks down over time, the solar cell will not be able to generate electricity efficiently. Therefore, stabilising the photoactive phase is a critical step in improving the longevity and effectiveness of perovskite solar cells. 

In the study, the Surrey team analysed how new technological advances can be used to strengthen the perovskite's phases. 

Dr Xueping Liu, the first author at the Advanced Technology Institute, University of Surrey, said: 

"Perovskite solar cells are not yet as reliable as traditional solar cells, even though they are more efficient at converting sunlight into electricity. To make these cells more reliable, it is important to understand why they are unstable and to find ways to control how they are made to prevent them from breaking down over time. This research aims to do just that by better understanding the cells' stability and how to improve their design. By doing this, perovskite solar cells could be used on a larger scale, helping to provide more clean energy for everyone." 

Dr Wei Zhang, the main corresponding author and project lead from the University of Surrey, said: 

"The scientific community will have to work on breaking through the stability bottleneck of perovskite materials. Revisiting scientific mechanisms of phase instability and seeking opportunities derived from light harvesting material will potentially trigger the evolution of the next generation perovskite PVs." 

The study has been published in Nature Reviews Chemistry. 

The research was conducted in collaboration with the University of Toronto, the University of Stuttgart, and the Ulsan National Institute of Science and Technology. 

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.