Posted in | News | Global Warming | Hydrogen

Important Research Project Aims to Recycle CO2 into Useful Chemicals

Starting in October 2010, Dr. Jennifer Strunk will lead a new junior research group in the Laboratory of Industrial Chemistry at Ruhr University Bochum lead by Prof. Dr. Martin Muhler with a 5-year, 1.18 million Euro research grant from the German Federal Ministry of Education and Research (BMBF).

Their research will target the photocatalytic reduction of carbon dioxide to produce useful building block chemicals of the chemical industry. Dr. Strunk, who has just returned from her postdoctoral research at the University of California, Berkeley, is looking forward to contributing to the research activity at her Alma Mater.

Dr. Jennifer Strunk

The funding of the junior research group originates from a successful application to the Call for Proposals “Technologien für Nachhaltigkeit und Klimaschutz – Chemische Prozesse und stoffliche Nutzung von CO2” (Technologies for Sustainability and Climate Preservation – Chemical Processes and Molecular Conversion of CO2”) of the BMBF

To reduce the impact of greenhouse gas emissions, worldwide carbon dioxide emissions have to be reduced as soon as possible. Dr. Jennifer Strunk and her coworkers from the Laboratory of Industrial Chemistry aim to reach this goal by recycling CO2 to important building block chemicals for industrial or fuel applications.

Many of these chemicals, for example methane and methanol, are used in large quantities for electricity generation, transportation fuels, and as basis for consumer products. Today these chemicals are produced from natural gas, a dwindling fossil fuel, and so this research also targets the problem of ever decreasing fossil resources. Dr. Strunk has the ambitious goal to recycle CO2 into useful products only by adding water and shining light on the reaction mixture, instead of using hydrogen and a conventional energy-intensive high-pressure process.

However, in order to make the CO2 and the water react simply under illumination with light to form the desired products, it requires adding an appropriate photocatalyst to the reaction mixture. As of today, such catalysts are barely known, so Dr. Strunk and the junior research group plan on knowledge-based development, and testing and characterization of a variety of heterogeneous photocatalysts for the desired chemistry.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.