Using Readily Available Farm Waste to Power the Farm

Engineers at Washington University in St. Louis, using an impressive array of imaging and tracking technologies, have determined the importance of mixing in anaerobic digesters, reactors that use bacteria to breakdown organic matter in the absence of oxygen.

They are studying ways to take “the smell of money,” as farmers long have termed manure, and produce biogas with it. The major end product of anaerobic digestion is methane, which can be converted to methanol or, when partially oxidized, to synthesis gas, a mix of hydrogen and carbon monoxide.

The goal is two-fold; one is to have farms that grow their own energy by using readily available farm waste to power the farm, the other is to eliminate the environmental threat of methane, a greenhouse gas considered 22 times worse than carbon dioxide.

Muthana al-Dahhan, Ph.D., Washington University professor of energy, environmental and chemical engineering, and his doctoral students Khursheed Karim, Rajnesh Varma, Mehuld Vesvikar and Rebecca Hoffman have determined that mixing is the most crucial step in the success of large, commercial anaerobic digesters that can react 1,500 gallons of manure. In addition to graduate students, numerous undergraduates have contributed to the research.

Al-Dahhan received a $2.2 million grant from the U.S. Department of Energy in 2001 to research anaerobic digestion. Since 2004, he and various collaborators have published no fewer than 16 papers on their anaerobic digester studies, the most recent a paper in Biotechnology and Bioengineering 100 (1): 38-48, 2008.

“Each year livestock operations produce 1.8 billion tons of cattle manure,” al-Dahhan said. “”If it sits in fields, the methane from the manure is released into the atmosphere, or it can cause ground water contamination, dust, ammonia leaching, not to mention bad odors. Treating manure by anaerobic digestion gets rid of the environmental threats and produces bioenergy at the same time. That has been our vision.”

There were then, as now, 100 anaerobic digesters in operation in the United States, but a remarkably high percentage – 76 percent – regularly failed. He and his colleagues at Washington University, Oak Ridge National Laboratory and ultimately the Iowa Energy Center based in Ames, Iowa, studied the configuration, design, hydrodynamics and mixing parameters of reactors, first on a laboratory scale, in reactors that held less than four liters of manure.

“A systematic study had never been done before, so we wanted to get a notion of what was behind the high failure rates reported,” al-Dahhan said. “We tested by gas injection, mechanical agitation, slurry circulation and liquid circulation and at different intensities. We found that at the laboratory scale, all of the different mixing modes performed adequately.”

They then went to Oak Ridge Laboratory to a pilot plant and tested a reactor that held 100 liters.

“As size increased, we found mixing plays a very important role in successful operations,” al-Dahhan said. “Intensity of mixing also is important. We found that if intensity of mixing is reduced, failure often is a consequence.”

Anaerobic digestion of manure is opaque, which means to understand the hydrodynamics of anaerobic digestion al-Dahhan and colleague developed a unique mutiple-particle, computer-automated radioactive particle tracking system, computational fluid dynamics and gamma ray computed tomography to see where and under what conditions biochemical stagnant or dead zones occurred. They also analyzed mixing systems, hydrodynamics, shear effect and reactor configuration.

“We then used all of our knowledge to redesign the commercial digester at the Iowa Energy Center,” al-Dahhan said.

The redesigned digester is running there today.

“The research we’ve done provides the basis to scale up in the future, “ he said. “The process is complex, but we’re seeking to simplify it for use as a quick assessment and evaluation of the digester. The final goal is a simple system ready for use by farmers on site for bioenergy production and for animal and farm waste management.”

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.