EPSRC Awards Funding for Studying Geological Safety of Storing Carbon Dioxide Underground

£3.27 million has been awarded by the Engineering and Physical Sciences Research Council (EPSRC), as part of the Research Councils UK Energy programme, to four research projects to study the geological viability and safety of storing CO2 underground in depleted North Sea oil and gas fields or saline aquifers.

Carbon Capture and Storage (CCS) is a technology which could help the UK government meet stringent reductions in CO2 emissions by 2050.1 This EPSRC funding for CCS research - £37 million, is part of Government’s £125 million Research and Development programme into Carbon Capture and Storage.

Minister for Universities and Science, David Willetts said: “Finding ways to reduce our CO2 emissions requires the latest research, especially around new technologies like Carbon Capture and Storage. The UK’s world-class scientists are extremely well-placed to tackle this challenge thanks to continued investment in skills, knowledge and cutting edge projects like these.”

CCS captures CO2 emissions from power stations and heavy industry instead of releasing it into the atmosphere. The CO2 is transported via pipelines then injected into porous rocks (reservoirs), from which oil or gas has previously been extracted, or in saline aquifers, and stored at depth. The CO2 is kept isolated from the rocks above by caprocks, which are less porous and, with their very low permeability, provide a ‘seal’. In the UK, storage sites are likely to be sited deep under the North Sea.

All the projects will come under the umbrella of the UK CCS Research Centre, established in April 2012, to improve coordination and visibility of approximately 150 UK academics working on CCS.

Dave Delpy, CEO of EPSRC said: “These projects will help accelerate the deployment of Carbon Capture and Storage, enabling the UK to maintain its world leading role in this vital low carbon technology.”

The Engineering and Physical Sciences Research Council (EPSRC) awarded funding to the following projects:

1. CO2 Injection and storage: short and long-term behaviour at different spatial scales - £1.2 million awarded to Imperial College London in collaboration with
Heriot-Watt University, Cardiff University, the University of Leeds and NERC British Geological Survey. Partner organisations: Progressive Energy Limited and the Energy Technologies Institute.

Drawing upon their experience in CO2 storage performance assessment research at industrial field pilots such as In Salah, Snøhvit and Sleipner, the research team, led by Professor Sevket Durucan and Dr Anna Korre from Imperial College London, aim to address some of the current knowledge gaps in this technology.

The project will develop optimisation tools for CO2 injection well placement and control strategies for plume behaviour. The research outcomes will support the design of industrial scale storage operations and maximise storage capacity utilisation, while accounting for uncertainties at licence and basin scales.

Through laboratory experimental and numerical modelling work, the project will investigate the effects of temperature and pressure on fracture and fault behaviour within the storage reservoir and the caprock seal. Research will improve the understanding of the effects of reservoir processes on structural integrity and containment of the stored CO2.

Further experimental and numerical simulation work in the project will study in situ wellbore cement/rock and cement caprock behaviour and develop novel wellbore and caprock leakage mitigation and remediation technologies utilising sealants and induced mineral precipitation processes.

2. Fingerprinting captured CO2 and proving ownership. £236,178 awarded to the University of Edinburgh in collaboration with the Scottish Universities Environment Research Centre (SUERC).

This study, led by Dr Stuart Gilfillan from the University of Edinburgh, aims to determine if the natural tracer (noble gases and carbon and oxygen Isotopes) fingerprint inherent in captured CO2 is sufficient to track its fate in the subsurface, distinguish ownership and to provide an early warning of unplanned migration out of the storage formation.

To do this the researchers will determine the fingerprint of CO2 captured from several of the UK capture demonstration projects, and at the Boundary Dam Power Plant prior to its injection into the Aquistore saline aquifer storage site in Saskatechwan, Canada. By comparing this to the fingerprint of the CO2 produced from the Aquistore monitoring well, some 100m from the injection well, they will be able to see if the fingerprint is retained after the CO2 has moved through the saline aquifer.

This will show if this technique can be used to track the movement of CO2 in future engineered storage sites, particularly offshore saline aquifers which will be used for future UK large volume CO2 storage.

3. Diagnostic seismic toolbox for the efficient control of CO2 storage. £893,883 awarded to NERC British Geological Survey, with the University of Leeds, University of Manchester, University of Edinburgh and the National Oceanography Centre.

Led by Dr Andy Chadwick of NERC British Geological Survey, the research team are developing sophisticated, non-invasive methods to monitor underground carbon storage sites. They will use a range of techniques including 3D time-lapse seismic surveys and ‘passive’ listening devices such as very sensitive geophones, and satellite measurements of ground movements induced by CO2 injection.

These tools will provide information on CO2 movement and changes of pressure in the storage reservoir to show how the rocks and geology respond to large amounts of CO2 being injected and stored over decades.

These techniques are cheaper and safer than monitoring methods which use observation wells. Drilling into sites could cause leaks or damage to the important caprock which seals in the CO2.

For the first time, data and statistics from existing CO2 storage sites at Sleipner and Snøhvit in offshore Norway, and In Salah in the Algerian desert will be integrated to improve analysis techniques storage site monitoring. Public reaction to CCS storage will also be explored.

The research team and industry partners, BP Exploration Operating Company Ltd, Statoil Petroleum ASA and the Department of Energy and Climate Change, (DECC), will inform how different types of storage sites such as saline aquifers, will respond to CO2 being stored, and will help assess the best sites for safe and secure storage of large-scale CO2.

4. How reservoir rocks and caprocks respond to hydrocarbon depletion and subsequent CO2 injection. £925,473 awarded to NERC British Geological Survey, Imperial College London, and Cardiff University. Industry Partners: Shell Global Solutions International BV.

The research team will focus on how the caprock and ‘reservoir’ rocks respond to oil and gas extraction and later ‘re-inflation’ as CO2 is injected. They will measure changes in stress, volume and permeability in the laboratory.

Geoscientists will use this data to inform computational models looking at how different rock formations respond during injection and over long periods of storage. These simulations will help forecast the geomechanical processes in CO2 storage sites over extended periods of time (up to 10,000 years).

The project, led by Dr Jon Harrington from NERC British Geological Survey, will apply these results to existing storage sites, for example the Goldeneye field in the North Sea, where hydrocarbon extraction has previously taken place. In addition, social scientists based at Cardiff University will study how the public perceive the risks and benefits of CCS as well as producing a communication toolkit.

The research will provide new data, modelling tools, communication methods and a better understanding of the processes involved, to help inform regulators and operators who are considering using such sites.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.