Green Reputation of Small Hydroelectric Dams Questioned in Latest ACS Podcast

The latest episode in the American Chemical Society's (ACS') award-winning Global Challenges/Chemistry Solutions podcast series questions the "green" reputation of small hydroelectric dams.

Based on a report by Andreas Maeck, Ph.D., in the ACS journal Environmental Science & Technology, the new podcast is available without charge at iTunes and from https://www.acs.org/content/acs/en.html.

Maeck explains that the large reservoirs of water behind the world's 50,000 large dams are a known source of methane. Like carbon dioxide, methane is one of the greenhouse gases, which trap heat near Earth's surface and contribute to global warming. Methane, however, has a warming effect 25 times more powerful than carbon dioxide. The methane comes from organic matter in the sediments that accumulate behind dams. That knowledge led to questions about hydroelectric power's image as a green and nonpolluting energy source. Maeck's team decided to take a look at methane releases from the water impoundments behind smaller dams that store water less than 50 feet deep.

They describe analysis of methane release from water impounded behind six small dams on a European river. "Our results suggest that sedimentation-driven methane emissions from dammed river hot spot sites can potentially increase global freshwater emissions by up to 7 percent," said the report. It noted that such emissions are likely to increase due to a boom in dam construction fostered by the quest for new energy sources and water shortages.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.