Posted in | News | Biofuels | Recycling

Five Strains of Naturally Occurring Yeasts Can Turn Agricultural By-Products into Bioethanol

Straw-powered cars could be a thing of the future thanks to new research from the University of East Anglia (UEA).

A new study pinpoints five strains of yeast capable of turning agricultural by-products, such as straw, sawdust and corncobs, into bioethanol - a well-known alcohol-based biofuel.

It is estimated that more than 400 billion litres of bioethanol could be produced each year from crop wastage.

The research team say that their findings could help to create biofuel which is more environmentally friendly and ethically sound than other sources because it would make use of waste products.

Processes to generate bioethanol from straw and other by-products are currently complex and inefficient.

This is because high temperatures and acid conditions are necessary in the glucose-release process. But this treatment process causes the waste to breakdown into compounds which are toxic to yeast (furfural and hydroxymethylfurfural) - making fermentation difficult.

One way to avoid these problems is to use genetically modified yeasts, but this new research has found five strains of naturally occurring yeasts which could be used successfully in the fermentation process.

Lead researcher Dr Tom Clarke, from UEA's School of Biological Sciences, said: "Dwindling oil reserves and the need to develop motor fuels with a smaller carbon footprint has led to the explosion of research into sustainable fuels.

"Bioethanol is a very attractive biofuel to the automotive industry as it mixes well with petrol and can be used in lower concentration blends in vehicles with no modifications. In Brazil, vehicles which run purely on bioethanol have been on the roads since 1979.

"Breaking down agricultural waste has previously been difficult because many strains of yeast necessary for fermentation are inhibited by compounds in the straw. Their toxic effects lead to reduced ethanol production."

The research team investigated more than 70 strains of yeast to find the most tolerant. They found five strains which were resistant to the toxic compound furfural, and which produced the highest ethanol yield.

Of the five furfural tolerant strains S. cerevisiae NCYC 3451 displayed the greatest furfural resistance. The genomic lineage of this strain links it to yeast used in the production of the Japanese rice wine Sake.

"These strains represent good candidates for further research, development and use in bioethanol production," added Dr Clarke.

The research was carried out in collaboration with the Institute of Food Research (IFR) and the National Collection of Yeast Cultures, which is based at the IFR. It was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Department for Environment, Food & Rural Affairs (Defra).

'Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates' is published in the journal Biotechnology for Biofuels.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.