Bacteria in Compost Could Provide 10 Percent of Transport Fuel for the UK

Bacteria found in compost heaps able to convert waste plant fibre into ethanol could eventually provide up 10% of the UK's transport fuel needs, scientists heard today (Tuesday 9 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

Researchers from Guildford, UK, have successfully developed a new strain of bacteria that can break down straw and agricultural plant waste, domestic hedge clippings, garden trimmings and cardboard, wood chippings and other municipal rubbish to convert them all into useful renewable fuels for the transport industry.

"The bioethanol produced in our process can be blended with existing gasoline to reduce overall greenhouse gas emissions, help tackle global warming, reduce dependence upon foreign oil and help meet national and international targets for renewable energy," said Paul Milner, Fermentation Development Manager of TMO Renewables Ltd, based in Surrey Research Park, Guildford.

The new strain of bacteria allows ethanol to be produced much more efficiently and cheaply than in traditional yeast-based fermentation, which is based on the beer-brewing process and forms the basis for most current commercial bioethanol production.

"Conventional ethanol production is energy-intensive, expensive, and time-consuming as the barley malt or other material being brewed needs to be heated up as a mash in feedstock pre-treatment. Then it is significantly cooled from that high temperature to a lower temperature for yeast fermentation, only to be re-heated when it is later distilled into ethanol. Our process is much more energy-efficient." said Paul Milner.

TMO's microbiologists screened thousands of different wild types of bacteria, looking for one that could survive high temperatures and that liked feeding off a wide variety of plant based materials.

"We found some heat-loving bacteria in a compost heap, from the Geobacillus family, which in their wild form produce lactic acid as a by-product of sugar synthesis when they break down biomass," said Paul Milner. "We altered their internal metabolism, adapting them to produce substantial amounts of ethanol instead".

"Our new microorganism, called TM242, can efficiently convert the longer-chain sugars from woody biomass materials into ethanol. This thermophilic bacterium operates at high temperatures of 60oC-70oC and digests a wide range of feedstocks very rapidly," said Paul Milner.

The scientists estimate that some 7 million tons of surplus straw is available in the UK every year. Turning it into ethanol could replace 10% of the gasoline fuel used in this country. "As our process uses agricultural waste materials such as straw, wood, paper and plants and other cellulosic fibre from domestic and municipal waste, it provides significantly greater environmental and economic benefits than crop-derived biofuels which some believe have contributed to the increased prices of basic food in so many countries," said Paul Milner.

"We have recently completed commissioning the UK's first cellulosic ethanol demonstration facility - one of just a handful worldwide," said Paul Milner. "We are constantly researching new, better ways to produce biofuels. We also believe that our process can be used successfully beyond biofuels to produce other high-value chemicals and drug ingredients that are currently derived from oil."

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.