Dec 3 2008
The International Atomic Energy Agency (IAEA) today called for increased investment in a plant breeding technique that could bolster efforts aimed at pulling millions of people out of the hunger trap.
IAEA scientists use radiation to produce improved high-yielding plants that adapt to harsh climate conditions such as drought or flood, or that are resistant to certain diseases and insect pests. Called mutation induction, the technique is safe, proven and cost-effective. It has been in use since the 1920s.
"The global nature of the food crisis is unprecedented. Families all around the world are struggling to feed themselves," says Mohamed ElBaradei, Director General of the IAEA.
"To provide sustainable, long-term solutions, we must make use of all available resources. Selecting the crops that are better able to feed us is one of humankind's oldest sciences. But we've neglected to give it the support and investment it requires for universal application. The IAEA is urging a revival of nuclear crop breeding technologies to help tackle world hunger."
For decades the IAEA, in partnership with the Food and Agriculture Organization of the United Nations (FAO), has assisted its Member States to produce more, better and safer food. In plant breeding and genetics, its expertise is helping countries around the world to achieve enhanced agricultural output using nuclear technology.
Already more than 3000 crop varieties of some 170 different plant species have been released through the direct intervention of the IAEA: they include barley that grows at 5000 meters (16,400 ft) and rice that thrives in saline soil. These varieties provide much needed food as well as millions of dollars in economic benefits for farmers and consumers, especially in developing countries.
In Japan alone, the Institute of Radiation Breeding (IRB) calculates that crops developed using mutation induction generated economic returns of nearly US$ 62 billion against US$ 69 million invested during the period 1959 - 2001. That translates into a remarkable 900 fold return on investment, and this in the public sector.
But with increased investment and broader application, the technology could positively impact the health and livelihood of even greater numbers of people. And as world hunger grows, the need has never been more urgent.