Nitrogen Loss From Forests Influenced by Tree Species Composition

Throughout the world, nitrogen compounds are released to the atmosphere from agricultural activities and combustion of fossil fuels. These pollutants are deposited to ecosystems as precipitation, gases, and particles, sometimes many hundreds of miles downwind of their release point. The Catskill Mountains of southeastern New York are a case in point - though they contain little in the way of industrial or agricultural pollution sources, they receive some of the highest nitrogen deposition rates in North America due to pollutants drifting in from midwestern power plants and east-coast cities.

Anyone who grows plants for food, fiber, or flowers, knows that nitrogen is crucial for healthy plant growth. But excess nitrogen that leaches from a forest can acidify the soils and streams and decrease water quality. Prior research has shown that in addition to plant uptake, microbial processes are very important in retaining nitrogen in forest soils, and that forested watersheds in the Catskills vary markedly in the amount of nitrogen they can absorb and prevent from leaching away. So why would atmospheric nitrogen deposition lead to increased losses of nitrogen from some forests and not from others? A study funded by the National Science Foundation and the U.S. Department of Agriculture provides some answers. The research, which is focused on the tree species control on nitrogen cycling dynamics in the Catskill Mountains, is published in the March-April 2009 issue of the Soil Science Society of America Journal.

Part of a long-term research project on nitrogen cycling in Catskill forests, this study utilized a stable isotope technique to determine how the microbes consume and transform nitrogen in the soil under stands of five different tree species that are common in the Catskills. Half of the forest plots also had experimental nitrogen fertilizer treatments. The study showed that forests dominated by sugar maple are particularly susceptible to nitrogen leaching, while soils under red oak and hemlock forests are better at retaining nitrogen and preventing leaching losses. This difference was partially related to the ratio of carbon to nitrogen in the soils. The microbes under the different tree species vary considerably in their production of nitrate, the form of nitrogen that is most readily leached into streams. However, unlike previous studies from western forests, this study found very little consumption of nitrate by the soil microbes in any of the forest types. Because of the low nitrate consumption, the forest types that have high nitrate production (such as sugar maple) also have high nitrate losses via leaching.

Lead author Lynn Christenson of Vassar College in Poughkeepsie, NY noted, “The most significant difference we see in nitrogen cycling under sugar maple trees compared to other tree species are much higher rates of nitrification, with very little consumption of this nitrate occurring in sugar maple soils. Why the soils and trees are not consuming this nitrogen is still a mystery.”

Project Leader Gary Lovett of the Cary Institute of Ecosystem Studies in Millbrook, NY stated, “It is important for watershed managers to know that differences in tree species composition can influence nitrogen retention. Some forest types are more likely to saturate with nitrogen than others.”

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://soil.scijournals.org/cgi/content/abstract/73/2/638.

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.